
Dünner Kirchweg 77
32257 Bünde
Germany
www.trenz-electronic.de
Introduction
The lack of flexibility in reconfiguring the PC has
been acknowledged as the Achilles’ heel to its
further deployment. The combination of user-
friendly graphical interfaces and the hardware
and software mechanisms associated with new-
generation bus architectures have made com-
puters less confrontational and easier to recon-
figure. However, from the end user’s point of
view, the PC’s I/O interfaces, such as serial/par-
allel ports, keyboard/mouse/joystick interfaces,
etc., do not have the attributes of plug-and-play.

The USB is the answer to connectivity for the PC
architecture. It is a fast, bi-directional, isochro-
nous, low-cost, dynamically attachable serial in-
terface that is in line with the requirements of the
PC platform of today and tomorrow.

While several microcontrollers provide USB
functionality, many applications require addition-
al flexibility, reduced component count or maxi-
mum performance. These requirements are fully
addressed by the Full-Speed USB Function con-
troller while preserving development cycles as
short as possible.
1

Features
• Fully compliant to USB 1.1 specification

- Full-Speed (12Mbps) operation
- Support for 4 Endpoints, including up to 3

user-configurable Endpoints
- Supports Bulk, Interrupt or Isochronous

data transfers
• Hardwired USB protocol layer

- No firmware intervention required
- Up to 10Mbps bandwidth

• Very compact design
- On-chip digital PLL
- On-chip Endpoint FIFOs
- Minimum gate count
- Optimized for FPGA implementation

• Lowest possible design risk
- Free behavioral model
- Comprehensive reference application
- USB Packet-oriented testbench
- Synthesizable VHDL model

• Very low cost
USB Function Controller

Microcontroller

Functional Block e.g. HID device

USB Upstream

USB Transceiver

Additional Endpoints

48MHz

Transceiver Bus

Endpoint Zero Controller
(entity usbEP0ctrl)

Endpoint Zero FIFO
(entity usbEP0fifo)

Serial Interface Engine
(entity usbSIE)

Endpoint Bus

EP0 BusSIE Control Bus

Clock Bus
Figure 1: System architecture.
Full-Speed USB 1.1
Function Controller
2000-September-7
 Product Specification

Full-Speed USB 1.1 Function Controller Product Specification
General Overview
Figure 1 shows the system architecture of a de-
vice based on the USB Function Controller. It
consists of the following components:
• USB Transceiver. To meet the electrical

requirements of the USB specification, an
external Transceiver is required. The refer-
ence application utilizes Philips Semiconduc-
tor´s PDIUSBP11A, but other devices can
also be interfaced easily.

• Microcontroller. To implement the USB
device framework a microcontroller is used.
Glue logic to interface with a standard 8051
derivative is provided with the reference
application, other microcontrollers can easily
be interfaced.

• Additional Endpoints. In case the device
requires additional endpoints, the associated
endpoint controllers need to be imple-
mented. A simple example is provided with
the reference application.

The USB function Controller consists of the fol-
lowing internal building blocks:
• Serial Interface Engine. This entity imple-

ments the full USB protocol layer. It is com-
pletely hardwired for speed and needs no
firmware intervention. The functions of this
entity include: frame recognition/generation,
parallel/serial conversion, bit-stuffing/de-
stuffing, CRC checking/generation, PID veri-
fication/generation, address recognition and
handshake evaluation/generation.

• Endpoint Zero Controller. This entity imple-
ments the dedicated Endpoint Zero function-
ality, mainly FIFO control and arbitration.

• Endpoint Zero FIFO. This entity implements
the 8byte FIFO associated with Endpoint
Zero.

Architectural Description
The USB Function Controller is based on several
bus systems, which interface the building blocks
with each other:
• Clock Bus. This bus carries all clock and

reset signals.
• Transceiver Bus. This is a bidirectional serial

bus connecting the Serial Interface Engine
with the external USB Transceiver.

• Endpoint Bus. This is a bidirectional bus con-
necting the Serial Interface Engine with up to
4 Endpoint Controllers.
2

• SIE Control Bus. This is a unidirectional bus
connecting the Serial Interface Engine with
the external microcontroller to set the device
address.

• EP0 Bus. This is a bidirectional bus connect-
ing the Endpoint Zero Controller with the
external microcontroller.

Clock Bus
The Clock Bus carries all clock and reset signals.
The USB Function Controller contains two clock
domains, one clocked with 48MHz and another
clocked with 12MHz. Table 1 summarizes the
Clock Bus signals.

The clk48 clock domain contains the digital PLL
which outputs the reconstructed USB clock at
clk12o.

All other building blocks are clocked by clk12.
This signal is usually directly driven by clk12o.

The rst signal is used for power-on reset. No
USB reset condition is generated on rst.

Transceiver Bus
The Transceiver Bus connects the Serial Inter-
face Engine with the external USB Transceiver.
Table 2 lists the signals building the Transceiver
Bus.

Table 1: Clock Bus: Signals.

signal direction purpose

clk48 in 48MHz clock input

clk12 in 12MHz clock input

rst in asynchronous reset

clk12o out 12MHz clock output

Table 2: Transceiver Bus: Signals.

signal direction purpose

urxd in receive data

urx0 in receive SE0

utxd out transmit data

utx0 out transmit SE0

utxoe out transmit enable
2000-September-7

Full-Speed USB 1.1 Function Controller Product Specification
Table 3 shows the relationship between the USB
States and the Transceiver Bus signals.

Endpoint Bus
The Endpoint Bus connects the Serial Interface
Engine with up to 4 Endpoint Controllers. Table 4
lists the signals building up the Endpoint Bus.

All signals except for the data buses, data bus
enables and SOF signals are available as
groups of 4 signals, one associated with each
endpoint. Endpoints interfacing to txd should use
three-state buffers enabled with in_trac.

Table 3: Transceiver Bus: Mapping.

Bus State urxd urx0 utxd utx0 utxoe

receiving 1 (J) 1 0 X X 0

receiving 0 (K) 0 0 X X 0

receiving SE0 X 1 X X 0

driving 1 (J) X X 1 0 1

driving 0 (K) X X 0 0 1

driving SE0 X X X 1 1

Table 4: Endpoint Bus: Signals.

signal direction purpose

rxd(7:0) out receive data

rxen out rxd enable

txd(7:0) in transmit data

txen in txd enable

in_trac(3:0) out IN transaction

out_trac(3:0) out OUT transaction

setup_trac(3:0) out SETUP transaction

nak(3:0) in NAK handshake

stall(3:0) in STALL handshake

togglein(3:0) in DATA toggle

datain(3:0) in IN data pending

sof_trac out SOF transaction

rxfrm(10:0) out frame number
3

Figure 2: Endpoint Bus: Receive Timing.

Figure 2 illustrates the timing of SETUP and
OUT transactions. nak and setup must become
valid within 1 clock cycle after the rising edge of
out_trac or setup_trac. Data bytes are delivered
approximately every 8 clock cycles. Data bytes
will be delivered, even if the USB packet is ig-
nored due to NAK or STALL handshake.

Figure 3: Endpoint Bus: Transmit Timing.

Figure 3 illustrates the timing of IN transactions.
nak, setup, togglein and datain should become
valid within 1 clock cycle after the rising edge of
in_trac. Data bytes are requested approximately
every 8 clock cycles. datain should be released
with the last data byte’s txen pulse. To send a
zero-length data packet, datain should be pulled
to zero within 1 clock cycle after the rising edge
of in_trac.

Figure 4 illustrates SOF token timing. sof_token
should be used to validate rxfrm, if glitch-free
frame numbering is required.

clk12

rxd(7:0)

rxen

out_trac
setup_trac

nak
stall

>= 8 clk12< 1 clk12

clk12

txd(7:0)

txen

in_trac

nak
stall

>= 8 clk12

togglein

datain

last data
byte

< 1 clk12
2000-S
eptember-7

Full-Speed USB 1.1 Function Controller Product Specification
Figure 4: Endpoint Bus: SOF Token.

SIE Control Bus
The SIE Control Bus connects the Serial Inter-
face Engine with the external microcontroller to
set the device address. Table 5 summarizes the
signals.

Figure 5 illustrates device address write timing.
The actual address change is delayed until
1 clock cycle after the next rising edge on
setup_trac.

EP0 Bus
The EP0 Bus connects the external microcon-
troller with the Endpoint Zero Controller. Table 6
summarizes its signals.

The EP0 Controller provides access to the 8 byte
Endpoint FIFO. Figure 6 illustrates FIFO read
and write cycles.

Table 5: SIE Control Bus: Signals.

signal direction purpose

uc_dadx(6:0) in USB device address

uc_wradx in write enable

Table 6: EP0 Bus: Signals.

signal direction purpose

uc_adx(2:0) in FIFO address

uc_drd(7:0) out FIFO read data

uc_dwr(7:0) in FIFO write data

uc_wren in FIFO write enable

uc_ctrl(7:0) in control

uc_status(7:0) out status

uc_wrctrl in control write enable

clk12

sof_token

rxfrm(11:0)
4

Figure 5: SIE Control Bus: Write timing.

Figure 6: EP0 Controller: FIFO Read/ Write.

To control operation of the EP0 Controller, a
command register is used. Table 7 illustrates the
command register layout.

The command register is write-only, Figure 7 il-
lustrates the command register write cycle.

Figure 7: EP0 Bus: Command Register Write.

Table 7: EP0 Controller: Command Register.

bit purpose

7 enable Control-Read

6 enable Control-Write/ No-Data Control

5 acknowledge Status stage

4 stall Endpoint

3:0 number of valid bytes in FIFO

clk12

uc_dadx(6:0)

uc_wradx
2000-September-7

Full-Speed USB 1.1 Function Controller Product Specification
The EP0 Controller provides status information
through a status register. Table 8 illustrates the
status register layout.

The Endpoint Zero Controller interacts closely
with the firmware to implement USB protocol lay-
er sequences. Figure 8 illustrates, how to imple-
ment Control-Read Sequences. The basic
scheme is as follows:
• Setup Stage

- Wait until status(7:4) is 1000
- Evaluate Device Request

• Data Stage
- Copy data into FIFO
- Validate FIFO, set control(7:4) to1000
- Wait for non-zero status
- Go to Status Stage, if status(7:4) is 0100
- Continue Data Stage

• Status Stage
5
 20
00-S
eptember-7

Full-Speed USB 1.1 Function Controller Product Specification
Simulation
Simulation is a vital part of design verification. To
ease the task of test vector creation, a powerful
VHDL package has been created. The main fea-
tures of this package are:
• USB Packet-oriented
• Stimuli creation
• Response verification

With USB packets being the atomic items of the
package, complex testbenches can easily be
created, which are isolated from USB protocol
and timing details. Devices may be stimulated
from USB and their responses to USB may be
verified. This allows for simulation of complete
systems including microcontroller and firmware.

Figure 10: Simulation: Testbench Setup.

Figure 10 illustrates the basic testbench setup. It
consists of the following main components:
• UUT. This is the Unit Under Test. It is treated

as a black box and exposes its behavior via
its outside ports only.

• Test Controller. The Test Controller stimu-
lates the UUT and verifies the UUT’s
responses. In case of a mismatch, a report is
asserted.

• Testbench process. The Testbench Process
controls the Test Controller’s operation
based on USB Packets.

Figure 11 illustrates the Testbench process. The
testbench package is implemented in usbTST-
PAK. The signal sim is used to limit the total sim-
ulation time by disabling the clock oscillators
inside usbTSTctrl. The signal stim is used to dis-
tinguish stimuli from responses. The example
transmits the Setup Stage of a GetDescriptor
Device Request and verifies that the Device an-
swers with an ACK handshake.

UUT
(black box)

Test Controller
(entity usbTSTctrl)

Testbench
Process

uut_rxd, uut_rx0

uut_txd, uut_tx0

clk48, rst

st
im

, s
im

tb
_x

d,
 tb

_x
0

tb
_c

lk

additional
processes

ad
di

tio
na

l p
or

ts
6

Figure 11: Simulation: Testbench Process.

Table 10 summarizes the Test Controller ports. It
is important to understand, that the Test Control-
ler interfaces the Testbench Process with the
UUT, instead of the Testbench Process interact-
ing with the UUT directly.

The following paragraphs summarize the proce-
dures contained in usbTSTPAK.

Table 10: Test Controller Ports.

signal direction purpose

sim in ‘1’ during simulation

stim in ‘1’ to stimulate UUT

clk48 out 48MHz clock output

rst out asynchronous reset

uut_rxd out connected to UUT’s urxd

uut_rx0 out connected to UUT’s urx0

uut_txd in connected to UUT’s utxd

uut_tx0 in connected to UUT’s utx0

tb_xd in testbench xd signal

tb_x0 in testbench x0 signal

tb_clk out testbench 12MHz clock

use work.usbTSTPAK.all;
...
sim<= '1', '0' after 15us;
...
process
 constant get_dscr: packetBUF:=
 (x"80", x"06", x"00", x"01",
 x"00", x"00", x"40", x"00");
begin
 stim<= '1';
 packetSETUP(tb_clk, tb_xd, tb_x0,
 "0000000", "0000");
 packetDATA1(tb_clk, tb_xd, tb_x0,
 get_dscr);
 stim<= '0';
 packetACK(tb_clk, tb_xd, tb_x0);

 wait;
end process;
2000-September-7

Full-Speed USB 1.1 Function Controller Product Specification
packetIN,
packetOUT,
packetSETUP

(signal clk: in STD_LOGIC;
 signal xd: out STD_LOGIC;
 signal x0: out STD_LOGIC;
 addr: in STD_LOGIC_VECTOR

 (6 downto 0);
 ep: in STD_LOGIC_VECTOR

 (3 downto 0));

packetIN, packetOUT and packetSETUP initiate
an IN, OUT or SETUP transaction to the ad-
dress/endpoint specified by addr and ep.

packetSOF
(signal clk: in STD_LOGIC;
 signal xd: out STD_LOGIC;
 signal x0: out STD_LOGIC;
 frame: in STD_LOGIC_VECTOR

 (10 downto 0));

packetSOF sends a Start-Of-Frame token with
the frame number specified by frame.

packetDATA0,
packetDATA1

(signal clk: in STD_LOGIC;
 signal xd: out STD_LOGIC;
 signal x0: out STD_LOGIC;
 data: in packetBUF);

packetDATA0 and packetDATA1 send/receive a
DATA package with the contents specified by
data. In case data is omitted, a zero-length pack-
et is sent/received.

packetACK,
packetNAK,
packetSTALL

(signal clk: in STD_LOGIC;
 signal xd: out STD_LOGIC;
 signal x0: out STD_LOGIC);

packetACK, packetNAK and packetSTALL
sends/receives an ACK, NAK or STALL hand-
shake.

packetIDLE
(signal clk: in STD_LOGIC;
 signal xd: out STD_LOGIC;
 signal x0: out STD_LOGIC;
 cycles: in INTEGER);
7

packetIDLE keeps the bus in idle (J) state for the
number of USB bit cycles specified by cycles.

packetRESET
(signal clk: in STD_LOGIC;
 signal xd: out STD_LOGIC;
 signal x0: out STD_LOGIC);

packetRESET keeps the bus in SE0 state for
more than 2.5us to generate a USB reset condi-
tion.

Synthesis
Synthesis of the USB Function Controller is
straightforward, only very few constraints need
to be considered for a successful implementa-
tion. Table 11 summarizes the timing groups and
their constraints. The design uses the two clock
domains clk48 and clk12. clk12 is usually driven
by the output of the internal DPLL on port clk12o.

The USB Function Controller contains a FIFO,
which should be implemented with a technology
dependent macro to achieve minimum resource
usage. While some synthesizers support auto-
matic RAM inference others require a manual
black-box implementation. To do so, create the
FIFO macro with the vendor-provided tools and
remove the entity from the synthesis project. In-
stead the FIFO is added to the design during
place & route. As FIFO depth is only 8 bytes, this
optimization is not required by most applications.

Table 11: Synthesis: Timing Groups.

From To Required
Delay

All Input Ports RC(clk48) 20ns

All Input Ports FC(clk48) 10ns

All Input Ports RC(clk12) 20ns

RC(clk48) All Output Ports 20ns

RC(clk48) RC(clk48) 20ns

RC(clk48) RC(clk12) 20ns

FC(clk48) RC(clk48) 10ns

RC(clk12) All Output Ports 62ns

RC(clk12) RC(clk12) 62ns
2000-September-7

Full-Speed USB 1.1 Function Controller Product Specification
Implementation
Assuming a technology-independent FIFO im-
plementation was chosen, implementation is-
sues are reduced to the resource usage of the
final design.

Resource usage depends on the number of end-
points used and additional features implemented
with the core. Table 12 summarizes the synthe-
sis results achieved with the reference applica-
tion described in a separate application note.

The reference application uses a single endpoint
and adds 8051 interface glue logic to the core.
The following resources are clearly identified to
belong to the application:
• 1 primary CLK is used to buffer the 8051’s

ALE signal.
• 1 secondary CLK is used to buffer the 8051’s

WR signal.
• 8 TBUFs are used to isolate the 8051’s P0

port.
• 16 TBUFs are used to isolate the glue logic’s

internal data bus.
• 4 CLBs are required to de-multiplex the

8051’s P0 bus.
• 4 CLBs are required to implement the 7-seg-

ment LED register

Table 12: Synthesis: Xilinx XCS10 Results.

Resource Usage

CLBs 190

CLB Flip Flops 203

4 input LUTs 337

3 input LUTs 52

16x1 RAMs 8

bonded IOBs 42

IOP Flops 12

IOB Latches 0

clock IOB pads 3

primary CLKs 3

secondary CLKs 1

TBUFs 24

total equivalent gate count 4106
8

Evaluation Package
To achieve a risk-free evaluation of the USB
Function Controller, an Evaluation Package is
available. The Evaluation Package is created
from a post-synthesis VHDL simulation model
with the generics being set up according to
Table 13. In conjunction with the testbench pack-
age, complete system simulation is possible pri-
or to product purchase.

References
• Universal Serial Bus Specification

USB Implementers Forum
http://www.usb.org

• Xilinx Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
Fax: +1 408-559-7114
http://www.xilinx.com

Revisions History

Table 13: Evaluation Package: Generics.

generic value

epin_mask(3:0) 0001

epout_mask(3:0) 0001

epsetup_mask(3:0) 0001

episo_mask(3:0) 0000

Table 14: Revisions History.

Version Date Who Description

1.0 00aug26 FB Initial version
2000-September-7

www.usb.org
http://www.xilinx.com

	Introduction
	Features
	General Overview
	Architectural Description
	Clock Bus
	Transceiver Bus
	Endpoint Bus
	SIE Control Bus
	EP0 Bus
	Generics

	Simulation
	packetIN, packetOUT, packetSETUP
	packetSOF
	packetDATA0, packetDATA1
	packetACK, packetNAK, packetSTALL
	packetIDLE
	packetRESET

	Synthesis
	Implementation
	Evaluation Package
	References
	Revisions History

